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Abstract: In this paper, we study the stabilization problem of a three-edge network system described by variable
coefficients wave equations. With the root node fixed and a tip mass attached on the common vertex, we design
two non-collocated controllers. Then we show that the closed-loop system is well-posed and satisfies spectrum-
determined growth condition while the feedback gain constants fulfill some requirements. Moreover, we prove that
the system is exponentially stable by applying Riesz basis method and utilizing some tricks of inequalities.
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1 Introduction

A collocated system means that the actuators and sen-
sors are placed at the same location. This is the pre-
ferred method of sensors and actuators placement be-
cause, for collocated measurement, the transfer func-
tion is passive and hence it is easy to stabilize the
system. The stabilization of such systems, especially
one dimensional multi-link flexible systems with col-
located boundary controls, has been the object of in-
tensive research in past decades. See for instance
[5,13,24,1,15,11, 26, 23] and the references therein.
However, in many real life mechanical systems, col-
location is simply not possible and this presents some
unique problems for system control [6, 17].

In recent years, researchers pay their attention on
the stabilization of non-collocated system gradually.
But as the zeros in such a system are much more
sensitive to perturbations in the system parameters
and boundary conditions, small increment of feedback
controller gains can result in the closed-loop instabil-
ity [18, 22]. The controller design for the stabiliza-
tion of non-collocated systems is much harder than
that of the collocated ones. Several articles considered
non-collocated control for specific systems by using
simulation and experiments [3, 21, 14, 20]. Theoret-
ical work about such controllers has been done quite
few. The first effort was made in [8] where an ob-
server based compensator for a string system with a
non-collocated actuator/sensor configuration was con-
structed. The authors proved that the observer is expo-
nentially convergent and the closed-loop system is in-
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deed exponentially stable. This work was then applied
to the Euler-Bernoulli beam equation [9] and was gen-
eralized to the two-collected strings system [10]. Re-
cently, observing that the complementary system used
to stabilize the closed-loop system is usually more
complex than the original one, [4] designed a non-
collocated feedback controller to stabilize the system
by using the technique of spectral analysis and Riesz
basis method. For the multi-link flexible structures,
[12] discussed the spectrum and the dynamical behav-
ior of a star-shaped network of non-uniform strings
with non-collocated feedbacks. However, the stabi-
lization of the closed-loop system was not addressed.

The aim of this paper is to obtain the exponential
stabilization of a three-edge network of non-uniform
strings system with a boundary vertex (called the root
node) fixed and a tip mass attached on the common
vertex. Two suitable non-collocated feedback con-
trollers are designed to get the well-posedness of the
closed-loop system with the perturbation theory of Cj
semigroup. Moreover, the spectrum distribution and
the exponential stabilization of the closed-loop sys-
tem are obtained by using the technique of asymptotic
spectral analysis, Riesz basis method and some tricks
of inequalities.

Let us begin with some notations. Let G =
(V,E) be a simply connected graph, where V' =
{ap,a1,a2,a3} is the set of the vertices, and F =
{e1, ea, e3} is the set of the edges. ag is the common
vertex of the graph GG, and a1, as and as, each of them
receiving only one edge, are called boundary nodes of
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the graph G. Let one of the boundary nodes, say a1,
be fixed and the others be free. Suppose that each of
the edges e;(i = 1, 2, 3) has finite arc length ¢;, which
can be parameterized by its arc length by means of the
function m; defined by

T - [0,&] —re,1=1,2,3.

So that e; can be identified as a real interval [0, ¢;](i =
1,2,3).

Now let the strings be expanded on G and coin-
cide with GG at rest. Denote by w;(z,t)(i = 1,2,3)
the displacement function of #;}, string departing from
the equilibrium position in position 7;(x) € e; at time
t. The dynamic behavior of the network of strings
can be described by the following partial differential
equations

(92 i\, 81’ 5
pi(w) G5 — 2 [gy(2) 22420 = 0,
x € (0,4),t>0,i=1,2,3;

w1<0,t) = 0;
w1 (01,t) = wa(la,t) = ws(l3,t);
2 oa(0) 2 (0, 8) + MEBL (4, t) = 0;
oi(0)22:(0,1) = uy(t), i = 2,3;
wi(x,O) = w?(x)’ Bau;i (3370) = wil(x)v

z€(0,6),i=1,23,

ey
where p;(z) > 0, o;(x) > 0 are the mass density and
the elasticity modulus of the 74, string, respectively;
M is the mass of the tip body attached and u;(¢) is the
control input, 7 = 2, 3.
We design the following feedback controllers
— (1), 1

Ug (t) = = 2, 3,
where %(0, t), %(&, t) are the outputs. The feed-
back gain constants a;; > 0, 3; > 0,7 = 2, 3.

We organize the rest of this paper as follows. In
section 2, we shall rewrite system (1) as an equiva-
lent evolutionary equation in a suitable Hilbert space
and show the well-posedness of the closed-loop sys-
tem (4). In section 3, we shall study the eigenvalue
problem of system (4) and manifest the spectral distri-
bution of the system. In section 4, we shall show that
the spectrum determined growth condition holds for
the closed-loop system by using its Riesz basis prop-
erty. After that, we will discuss the stabilization of
system (4) and obtain that the closed-loop system is
indeed exponentially stable. Finally, we shall make
some conclusions of this paper.

2 Well-posedness of the System

Let R, C be the sets of real numbers and complex
numbers, respectively. Let H*(0,£4;)(i = 1,2,3;k =
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1,2) be the usual Sobolev space and L?(0,4;)(i =
1,2, 3) be the usual Hilbert space.

Set X == {W = (w;)}_; € IZ_HY0,4) :
’U)l(O) = O;Ujl(fl) = w2(€2) == U}g(fg)} endowed
with the inner product

I

<W,V >y

for W = (w1, w2, ws),V = (v1,v2,v3) € X, where
wj,(z) means the derivative of w;(z) with respect to
.

Set H := X x II3_, L?(0, ;) x C equipped with
the norm

(W, V,p)[|>
3. o 2 2
= 2 Jy [oi@lwia(@)” + p)loite) ] do
+M|p|?
for any (W,V,p) € H. Then (H, || - ||) is a Hilbert

space.
Define the operator A in H by

W \%4
Al v | =| Ghyloi@ue@l) | | @
pi(x) i=1
p — 31 Li=1 il wia (€
with the domain
(W, V,p) € X NIT3_, H?(0, ;)
xX x C:
D(A) = Ui(O)wm(O) = Oéi’l)i(()) + 511]1(&),
1=2,3;
p=wv1({1)
(3)

Then, we rewrite system (1) as an equivalent evolu-
tionary equation

PO — AW (1), t>0,

AW ()
{ W (0) = W,

where W(t) = (W(¢ t)a daivg(v t)? %(61? t))Ta W(O)
(Wo, Wi,p)™ € H, Wy = (w)i_, W1 = (w})i,
are given.

We need the following characteristic features of
the operator A.

“)

Theorem 1 Let A be defined by (2)-(3). Then A
is a closed and densely defined linear operator in
H. A — KI is a dissipative operator for K >
ﬁ max{%, %}, where ~y;, i = 2,3 are any positive

real numbers satisfying v; < 260?’ i=2,3.
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Proof: The proof of that A is a densely defined and
closed linear operator is a routine work. Here we only
prove the other assertion.

For any (W, V,p) € D(A), we have

éR<("4 - KI)(W Mp>7 (W7 V7p)>

= 8?23:/& [ai(x)vm(x)wix(x)dm}

—%ZJZ Ywig (¢ K||(W,Vp)||2
3 .
< %;ai(a:)wm(x)v (z) o
—%ZO’Z wm I(]\4|p|2
= %Zaz wzx ’L(El)
—%ZJZ Wiz (0)v;(0)
—%Zaz Ywiz ()i (£;) — K M|p|?
3
= _%Z[O‘ﬂ%( ) + Bivi(€;)]07(0) — K M |p|?
i=2
3
< Y —ailui(0)? - 72\%
i=2
13 51'
a 57, % vz — Vi gz 2
3 LBl + St
3
Bivi
= > ( 5 ai) vi(0)[?
i=2
5.1 8
T DRI SITA
i—2 2 i
Notice that 61'2% a; <0 and BI — MK <O0as

vi < % and K > L 77 max{ f 2, } which implies

that

That is, A — K1 is dissipative. O
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Theorem 2 Let A be defined by (2) and (3). Then
0 € p(A) and A~' is compact. Hence, A is discrete
(there exists a number X in its resolvent set for which
R\, A) = (M — A)~Lis compact), and o(A), the
spectrum of A, consists of isolated eigenvalues of fi-
nite algebraic multiplicity only.

Proof: For any (F,G,c) € H, where
F = (fitx))y, G = (gi(x))i,. we con-
sider the solvability of the equation A(W,V,p) =
(F,G,c), (W,V,p) € D(A).

From the definition of .4, we get that

vi(z) = fi(x), x € (0,4;),i=1,2,3; (5)

p=v1(l1) = v2(l2) = v3(l3), (6)
and W = (w;(x))3_; satisfies the following equations

[i(2)wiz(2)], = pi(x)gi(x), z € (0, 4),
i=1,2,3; (N
w1(0) = 0; (®)
wi(fr) = wa(l2) = w3(l3); ©)
Mc—i—Zaz wiz (4;) = 0; (10)

i=1
0i(0)wiz(0) = o f;(0) + Bi fi(£s),

i=2,3. (11D

Integrating (7) from 0 to x for any =z € (0, ¢;) and in
view of (11), we have

(@) wia(a) = 03(0)uwia(0) + [ pi()gu(s)ds

= a; fi(0) + Bifi(4:) + /Ox pi(s)gi(s)ds
— Gi(x), i =2,3.

Especially, for i = 1, we have

(12)

Q@WM@—QWWM®£[m®m®%

(13)

(12) and (13) together with (10) yield that

o1 (l)wiz(l1) = —Mec — Z ¢3¢ (14)
So,

01 (O)U)lx(())

151
= ()t = [ pi()gi(s)ds
0
3 A
=—Mc =Y ¢i(ti) = | pi(s)gi(s)ds
=2
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=: ¢o.

Let us insert (15) into (13), then

5)

o1(2)wie(z) = do + /Ox pi(s)gi(s)ds =: ¢1(x),
which implies

= " 91ls) ds.

0 o1(s)

w1 ()

16)

We now integrate (12) from x to ¢; for any x €
(0,4;), i = 2,3 and employ (9) and (16) to find

b ¢i(s)

wj () w;i(l;) — ; Ui(s)ds

74 i .
_ /1 010) yo [ 900D 4o a7

0 o1(s) e 0i(s)

Denote by W = (w;(z))}_,, V = (vi(z))i,
then (W,V,p) € D(A) is the unique solution of
A(W,V,p) = (F,G,c). Consequently, A~! is con-

tinuous and 0 € p(.A) by the inverse operator theo-
rem.

Moreover, in view of D(A) <C X N
113, H?(0,4;) x X x C, A~1 is compact owing to the
compact embedding theorem. Hence, A is discrete.
Consequently, o(.A) consists of isolated eigenvalues
of finite algebraic multiplicity only ([7]). g

Theorem 2 together with Theorem 1 asserts the
following result according to the Lumer-Phillips the-
orem ([19]).

Theorem 3 A generates a Cy semigroup of contrac-
tion on ‘H. Thereby, system (4) is well-posed in H.

3 Spectral Distribution of the System

In this section, we shall study the eigenvalue problem
of the operator A to find the asymptotic distribution
of its spectrum.

From (A — A)(W, V,p) = 0, it holds that

vi(z) = dw;(x), © € (0,4;), i =1,2,3,
P = 'Ul(gl) = )\wl(fl),

and each component w; of W = (w;)3_, satisfies

Nwi(x) — pigm) [03(2)wia ()], = 0,
x € (0,¢;), i=1,2,3,; (18)
w1(0) = 0; (19)
wi (1) = wa(ly) = ws(ls); (20)
0i(0)w;z(0) = Aaw; (0) + Biw; (¢;)],
E-ISSN: 2224-2880
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20 s (0 3
A Mwi(ts) | S04l win () = 022)

i=1

ey

i=1 3

Clearly, the eigenvalue problem (A — A)(W,V,p
0 can be solved by finding a solution W = (w;)?_; to
(18)=(22).

Let us consider the differential equation (18) at
first. Set w;(x) = \/oi(x)w;(x), i = 1,2,3 and
substitute it into (18) to get

Diga () — N2 pi(z) @i(z) + bi(2) pi(z) @i(z) = 0,(23)

() oi(x)
where
Oiz(x 2 Oizx\T i\
)= Lll ( az'((x)>> - % ( Uz(;)))] pigwi,
i=1,2,3. 24)

Then (19)-(22) has the following form with w; replac-
ingw;, 1=1,2,3

w1 (0) = 0; (25)
wi(6)  wa(l)  ws(ls)
Vou(lh) — Voalls)  \os(ls) 20
5 (0) 0 (0) — %am(O)@i(O)
N [ai0) -,
=A [azwz(o) + B O_i(&)wz(&)‘| )
i=2,3; (27)
3
Z Uz(&)“%x(&)
=1
3 2 s (s
= E(J;W + %aw(&-)) ;(fz),). (28)

=1
i . 0
Next, let m; 1= / pi )dQ, and define a new
o \oi(0)
independent variable

&i(x) = /0"” /giéz;de, z € (0,4;).

Then &; € (0,m;) foreach i = 1,2, 3. In addition, let

PR
(6 = | 2]

1/4
} Bi(z(€));  (29)

36 = | (15 220 = 120w ) (257 (w6,

(30)
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fori = 1,2, 3, where x(&;) is the inverse function of

&i().
Accordingly, (23), (25) and (28) can be changed
into

2(&) — N2i(&) + [bi(x(&)) + ¢i(&)] (&),
& € (0,my),i=1,2,3; 3D
21(0) = 0; (32)
z1(my) 29(ms2)
Vo1(t)or () /pa(la)o(l)
_ z3(m3) .
Vp3(l3)os(l3)’
(33)
/9i(0)pi(0)2(0) + ¢i2i(0)
B G (0)pi(0) O3 oi(ti)pi(:) o)
1 =2,3; (34)
3
> v aill)pi(li)zi(my)
=1
L -NM
- ;[—3 Vo lp ) + di]zi(m;), 35)

where b;(z(&;)) and ¢;(&;) are given by (24), (30),
respectively, and

ci = =300 O O] (2),(0)
o0 @O)p0) 5 G6)
dii= VI LRy S )
ol Goyas
2V/piG)os()

Herein and afterwards, the prime always denotes the
derivative with respect to the independent variable &;.

In what follows, we shall get the asymptotic
expression of the solution to (31)-(35). According
to the theory of ordinary differential equation, there
exist two linear independent solutions ¢;(&;; \) and
¥i(&i; A) to (31) for A € C with [A\| > § > 0. Fur-
thermore,

Gi(Cis \) = e [1+O< )] (38)
Pi(is \) = e {1+O()\>} (39)

(& \) = Aei {1+0<i>} (40)
G = svo (5] @n
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where O (%) means some function like £ (i”\) and

there exist constants C, Ry such that |f(z,\)| < C
for any z € [0,m;] whenever |A\| > Ry (see, [16,
Theorem 1, pp. 49]). Hence, the general solution to
(31) can be expressed as

2i(&) = AN s+ Bi(Me (11, @2)

where A;(\), B;()) are constants dependent on A and
the notation [a]; := a+ O (%) is used for simplifica-
tion. From (42), it is obvious that

2(&) = AWM 1]y

By denoting

— B;(M) e [1];. (43)

ki =/ pi(ti)ai(&i), (44)
ki = {/pi(0)a:(0), (45)
and inserting (42)-(43) into (32)-(35), we get

A(N)-(A1(A) A2(2) A3(A) Bi(X) Ba(A) Bs(N)™ =0,

where
A(N) =
[1]1 0 0
Am Am
ekll[l]l _ik’QQ[l]l )\0
’VVL2 me«
0 2 [1]1 _ek; [1]1
0 a49 0
0 0 as3
ag1 ag2 a63
[1]1 0 0
—Am —Am
T =[x _EAkQ ~[1h AO
0 SR -S|
0 a4s 0
0 0 ase
ag4 ags ae6

with

asgy = Mky — zf - & e*m2)[1]1 + ea[1)1;
ass = — (ks + 2 = : 62 —Am2) 1]y + co[1]1;
ass = A(ks — %; - 5; ’\m3)[1]1 + e3[1]s;
ase = —)\(%3 + 8 P e )11+ e[l
agi = (XM +>\k —d) i)y, i =1,2,3;
agj = (Aj,jf Nki — di)e mi[1]4,
j=4.56,i=j—3.
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Clearly, A € C\ {0} is an eigenvalue of A if and only
if X\ is a zero point of the determinant of the matrix
A(N).

Now, the spectral distribution of the system oper-
ator A can be found in the following theorem.

Theorem 4 Let A be defined by (2) and (3). Assume
that o; # \/pi(0)0;(0) =: k?, i = 2,3. Then the

spectrum of A distributes in a strip parallel to the
imaginary axis. Moreover, o(.A) is a union of finitely
separable sets.

Proof: By a straightforward computation, we obtain

| det A(N)| M £~
3 = ];—[(kZ +=)
WA=Foo A i Kikaks ki
> 0;
det A(A M Ze
et AN M prp e
RAb=00 |\~ A Xy e kikoks i ki
> 0,

(47)
which implies that the spectrum of A distributes in a
strip parallel to the imaginary axis. In other words,
| det A()\)] is a sine-type function in . Then the con-
clusion holds by Levin lemma [2]. O

4 The Stabilization of System (4)

In this section, we will establish the exponential sta-
bilization of system (4). The Riesz basis property of
system (4) will be proved at first. The exponential sta-
bilization of the system is then obtained.

Theorem 5 Suppose a; # \/pi(0)03(0) =: k2, i =
2,3. The sequence of generalized eigenvectors of A is
complete in H.

Proof: To begin with, we introduce an auxiliary op-
erator A defined by Ao(W,V,p) = A(W,V, p) for
any (W, V.p) = ((wi)iy, (vi)iy.p) € D(Ao) with
domain

D(Ao) = { p=v1(¢1),0(0)w;i(0) =0, i = 2,3

Then Ay is a skew-adjoint operator in H by the defi-
nition and hence || R(\, Ap)|| < o VA € R\{0}.

The completeness of the sequence of general-
ized eigenvectors of A means that Sp(A) = H, or
equivalently, Sp(A)* = {0}, where Sp(A) is the
closed subspace spanned by all generalized eigen-
vectors of A. Taking (Wy, Vo, po) € Sp(A)*L,

E-ISSN: 2224-2880
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R(\, A)(Wpy, Vi, po) is an entire function of \ as A is
discrete. The same is true for R(\, A)*(Wo, Vo, po).
Denote by

R()‘) = <(F7 G, C)vR()‘vA)*(W07%7p0)>v AeC

for any (F,G,) = ((fila)),, (i)l ) €
H. Clearly, R()\) is an entire function of A, and
limy_, 10 R(A) = 0 since A generates a Cjy semi-
group.

We shall certify R(A) = 0,VA € C so that we
can get Sp(A) = H. To this end, let us consider the
following equations for A € p(A) N p(Ag) NR™.

()\ — A)(Sl,Tl,Tl) = (F, G, C),

()\ - .Ao)(SQ,TQ, 7"2) = (F, G, C), (48)
where
(S1,T1,m1) = ((s16(2))is, (1i(2))Poy, ),
(S2, T2, 79) = ((s2i(2))izy, (tai())isy, 72)-
Set
((si@)izy, (bi(@))img, ) =: (S, T,7)
= (Sl,Tl,’l“l) — (SQ,TQ,T‘Q). (49)
Then
”R(/\7~A)(F7 G, C)H = ”(SlaTIﬂ"l)H
= ”(S’ T, T) + (S27T27T2)”
= ”(Sa T, ’I”) + R()‘vAO)(Fv G, C)H
<IST+ RGOl S0

To evaluate ||(S, T, r)||, we use (48), (49) to give that
tri(z) = Asui(x) — fi(w),
tai(x) = As2i(x) — fi(z),
ti(z) = t1;(x) — tai(x) = As;i(x),
r=t11(01) — t21(f1) = t1(41) = As1(f),
and s;(z), i = 1,2, 3 satisfy
Npi(2)si(x) — [0i(2)siz(2)]e = O,
x € (0,4;),i=1,2,3;
51(0) = 0;
s1(01) = s2(la) = s3(L3);
N2 Msy(01) + Y31 0i(4i)siz () = 0;
0:(0)8i2(0) — Nasi(0) + Bisi(4;)]
= Ma;s2i(0) + Bis2i(€i)] — i fi(0) — Bifi(£s),
i—2.3.

(5D
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Similar to the analysis in the third section, we denote

by
T pi(®)
bile) = /o oi(t)
b pa(t)
m= [
and set
S fl : \/pz fl 0; x(&)) ( ( ))v (52)

for £ € (0,m;), i =1,2,3,

where z(&;) is the inverse function of &;(z).
Then (51) can be rewritten as

/(&) — A%5i(&) = bi((2(£))5i(&),
& c (O,mi), 1= 1,2,3;
51(0) = 0;
(o1 (1)1 (€1)] 7451 (ma)
= [p2(l2)02(Ls)] /455 (my)
= [p3(€3)03(Ls)] " 455(ms);
0)a;(0)

Vpi(0)0i(0)5(0) — [

+¢i(0)]5:(0)

pi(0)o;(0)

—% 5i(m;) = Nags2i(0) + Bis2;(4i)]

azfz( ) Bif ( )7 i =2,3;
P 1[[’1( Z)UZ(Ez)]l/ZLN/( i)

[34/\7(“ = ¢i(€:)]si(m;) = 0,
(53)
where

7 104 2 104 )xx —
bi((&)) = [§5 2y — et
Ci $) = % PzUz)_5/4(ﬂ Uz)maz

The general solution ;(&;) of the first equation in (53)
has an asymptotic formula

5i(&) = A(Ve (1

h+ BiN)e (1),
& € (0,mg), i=1,2, 1 S

3.

Here [1]; = 1+ O(1/\).
Substituting (54) into (53), and applying
Cramers’ Rule to the resulted identities, we obtain

Ap(n) = 22822(0) & Basaa(ls)

ko — Q2
2L

+ o(1);

As()) = a3s23(0 )+53823(53) +o(1);

ks — 92
k3
By(X) = O(eN™);
Bs(\) = O(eM™). (55)
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Thus, for each i € {2, 3},
@;52i(0) + Bis2i(£;)

si(0) = LA ) 4 oem,
hi-%
sitmy) = S CLE Al oy 4 o,
R

By noticing that

where

|ais2i(0) + Bisai(4i)| < | (S2, To, ¢) ||,
4 = ma a; + Bi
i=2 3 minxe[o,&-}{ai(l’
we have

£;
)}”/0 Ji(:v)dac},
15:(0)] = &; '[5:(0)]

= [ O L) 4 0|

< T Am;
e (52, T, O [+ 10(™)

< fylt = IR a c>|r[ S+ 10(em)
:[O(mv-+cxe””ﬁHKP107dH,
and
|5 (L) = Kyt [Si(ma)|
_ |Oéi82i(0) +6i82i(€i)e>\mi[ 1 ]
1 —Oéi//g? ]ﬂEz
wwkn
1— oy
)M 4+ 0(e Amz)]u(F G, o).

1+ 0(M™)|

SM

2| I(F.G, o) +0(™))]

Hence,
AH(S,?)T, )2

— = ¥ )@@ + Xl 6

I
Mo :

s
I
—

7i(0)si(0);(0)

1(0) + Biti(4:) + citas(0)
+Bit2i(€:)]t:(0)
= )\2 233 [i|i (0) 2 + Bisi(£:)s:(0)]

=2

I
M
?

s
[|
N

+A2 23) [i52i(0) + Bis2i(£:)]s:(0)

=2

—A 23: i fi(0) + Bi f;(£:)]s:(0).

=2
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Consequently,

(8. 7.0

< A 2o feilsi(0) [ + Bilsi(€)]]s:(0)]
A ais2i(0) + Bisai(£:)]]5:(0))]
+ i |0 fi(0) + Bifi(Li)|i(0)]

< S, wO(L IR, o)
+X BOGIE.G, o)l
+ulO() + O™, G, o)

= O()I(F.G, 0%

By using the above inequality and (50), we have the
estimate

IR, A)(F, G, C)II

<18, 7.1+ | (.G,

W
1

VI

which implies limgy oo R(A) = 0.

In addition, R(\) is uniformly bounded along
the line RA =~ since R(A) is an entire
function of finite exponential type.  Then the
Phragmén-Lindelof theorem (see [27]) implies that
R(\) is bounded in the complex plane.  So
R(A\) = 0,YA € C. Notice that R(\) =<
(F,G,c), R\, A)*(Wo, Vo, po) >, Y(F,G,c) € H.
We conclude that R(\, A)*(Wp, Vb, po) = 0, which
means that (W, Vo, po) = 0. That is, Sp(A) = H. O

The following proposition ([25]) provides us with
the sufficient conditions of that a sequence forms a
subspace Riesz basis.

)+ g | I G o,

< [O( (56)

MI

Proposition 6 Let A be the generator of a Cy semi-
group {T'(t) : t > 0} on a separable Hilbert space H.
Suppose that the following conditions are satisfied

1). The spectrum of A has a decomposition

IJo(A

2). There exists a real number o € R such that

sup{RA|A € 01(A)} < o <inf{RAX € 02(A) };

_0'1

3). The set 02(A) = {\i }ren consists of isolated
eigenvalues of A and is a union of finitely separated
sets.

Then there exist two T(t)-invariant closed sub-
spaces H1 and Ho with

Hi={feH|ENAS=0Y\eEa(A},
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Ho = W{i EMg, A)f : M\, € 0(A),
k=1

Vm € N, Vf € H}

such that Hi(\He = {0} with property that
0(Alp,) = 01(A) and o(Aly,) = 02(A).

Moreover, there exists a finite collection (), of el-
ements in oo(A) such that { E(Q, A)Ha }reN forms
a subspace Riesz basis for Ho, where

=Y E\A)

AEQ

Qk:

is the Riesz projector corresponding to §y, .

Theorgm 7 Let A be defined by (2) and (3) and let
o; # k:Z-Q, 1 = 2,3. Then there exists a sequence of
generalized eigenvectors of A that forms a Riesz basis
with parentheses for H. Therefore, the closed-loop
system (4) satisfies the spectrum determined growth
condition.

Proof: We take 01(A) = —oo, o3(A) =
op(A) , then o(A) has a decomposition o(A) =
o1(A)Uo2(A). Thus, condition 1) is fulfilled. Be-
sides, Conditions 2) and 3) also hold by Theorem 4
and Theorem 2. Hence, there exists 7'(t)-invariant
closed subspace H2 such that the sequence of gener-
alized eigenvectors of .4 forms a subspace Riesz basis
(that is the Riesz basis with parentheses) for Hs by
Proposition 6. Furthermore, Theorem 5 shows that
the sequence of generalized eigenvectors of the sys-
tem operator A is complete in #, which implies that
Ho = H. We complete the proof. O

Theorem 8 Let A be defined by (2) and (3), and

0<as# %% Then system (4) is exponentially stable
provided that s, Bo satisfy the following conditions:

oy > 5k3, (57)

T4
B2 o max] C2=F 202l s
k2 (012 — 5]{5%)]6‘% kz

where k; = /pi(0)0;(0) > 0, i = 2,3; ko =
. pg(fg)()'g(fg) > 0.

Proof: Since the spectrum determined growth con-
dition holds for system (4) (Theorem 7) and o(A) =
op(A) locates in the left half plane, the proof of the
exponential stabilization of system (4) is equivalent to
verify that the imaginary axis is not an asymptote of
o(A). This can be done by showing that

inf

| det A(izx)| > 0.
2€R\{0}

(59)
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Let Ag(\) be the main part of A(\) (see (46)). Then

. —. Q. (61)
(59) can be replaced by
Thereout,
inf |det Ag(iz)| > 0.
sl 1 4et Soliz)] Sy kaks| det Ao (iz)|
By a direct calculation, we have 20 MIN ()]
. . o . Qg . .
ki kok = |8sinh(izmq)[ke cosh(ixmsz) + == sinh(izma)]
det Ag()) - (— Sx1F2ks, s
204M ) ixmi 1. ; @2 . i
= NI, [k; cosh(Amy;) + % sinh(Am;)] e [k cosh(izmy) + oo sinh(izm,)]
. )\m BQ _ —tzmy k o % e—iacmg _ @
+2sinh(Amy ) [(k2 + kz) ) [( kz) Ty
= asz .
-|k3 cosh(Am3) + == sinh(Am ~
ks (hms) ks ( 3;} = [i8sin(xmy)[k2 cos(xms) + Pt sin(xms)]
. asg )\m 3 2
+2sinh(Am)[(ks + 3) 3 4+ kig] +[cos(zmq) + isin(zmy)]
~ 7 Qg .
-[ko cosh(Amg) + % sinh(Amsg)] [z cos(zmz) + 2?2 sin(zma)]
2 5 —[cos(zmy) — isin(zm;)]
=xma Q2 _amg P2 ~ o o
e (ke = e ) {(Fo — f)[cos(xmg) _ i sin(zmy)] — fi
[ks cosh(Amns) + a8 sinh(Amg)] 2
ks sin(zmy) - | (kg — 1Oaz)sm(wm )
2 sinh(Ama)[(Fs — %)6_’\’"2 - %} R R ?
2 2
- o~ o« I}
[s cosh(Ams) + 22 sinh(\ms)] +i[(10kz — =2) cos(zmz) — 1:]]
ks ko 2
2sinh(A ks — = 3= ~
+2sinh(Am)[(ks T )e k;3] + cos(zmy) [%Q cos(xmg)—i-%—l-ikg sin(xmg)] ‘
Tkg cosh(Ama) + % sinh(Ama)] 2 ?
~ 2 . - Sin(azm1) ~ 100[2 .
— Qg 3 [k N Qi . = |N(x)||—=—= " | (k2 — —=—) sin(zm
= 8sinh(Am )II;_y[k; cosh(Am;) + s sinh(Am;)] [N ()] N ()2 l( 2 a ) sin(zma)
[k cosh(Ams) + =2 sinh(\ms)] s 3,
_ 3 a [(10]{32 - ;) COS(SUmQ) — k‘7]
{e M [ky cosh(Amsg) + ?2 sinh(Amsg)] 2 2
2
a2 B2 5 .
o miyq 2 amy, P2 - | == cos(zma)+—+iko Sln($m2)] “+cos(xmyq)
(s = Sy - ) (60) [k b
F A=1 c R\{O} t - Sin(xml) ,32 10&2
or any 1T, T » € = |N(x)| |cos(zmy) + ———F - |—-== - —
- [N ()] ka ke
N(z) = kscosh(izms)+ % sinh(izms) )
- ’ si B2 22y
_ T cos(ams) + z% sin(zms): sin(zma) + 10(k3 2 ) sin(zma) cos(xmg)l
3
N(z) = %—j cos(xma) + % + ik sin(zms). +Z.Siri($m1) (&% — k2 cos?(zma) — 252
IN(@)]? | k3 k2
Then,
>~ Q3 ~ Qg -(57%2 — %) cos(zma) + ﬁj — 10aus + k2 (62)
0 < min{ks, TS} < |N(x)] < max{ks, E—g}, ko k2 2
IN(z)| > mm{k% =2 } 52(62 2?‘2) > 0: Take {x,,} C R such that
5 et Ao(i,) det Ao(ia)
52 ﬁg 2a2 . det AQ ixn det Ao 1T
2)| < max{ky, =} + = (= + = lim —— % = —_—
N ()] {k2 kz} T kg) S TN o)

~ zer\{0} x4|N(z)|
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If lim sin(z,m;) = 0, we have, by (62),

n—-+00

3k, kgkg‘ det Ao(w?) |

1m

z€R\{0} z*M|N(x)
::ngglwAmxnnwmsumnuﬂ
B2 B2 209
> min{k , =
{k2 } " —(= P —)
> 0. (63)
Otherwise, Em sin(z,m1) # 0, then by (62) again,
we have
3/431]{?2/{33‘ det Ao(wj)|
2t M|N(z)|
. 2 _ 2
‘SmA(ﬂ (@ — k3) cos®(zma) + 25,
IN(z)] | k3 k2
a2 ﬁz
(7 - 5/€2) COS(.CUmQ) + kiz - 10012
ko 5
. 2
sin(zm a5~
= ‘A(il)‘ : (N—; — k3) [cos(zmy)
|N ()] k3
~ 12
2 (2 = 5k2) 2
e+ 2 4k - 100y
22 _ g2 k3
k2 2
% (22— 5h3)?
—E ke . (64)
25
k2
Using (57) and (58), it is easy to see that
2 ~
D32,
k3
2 (22 = 5ky)
% > 1,
2 _ k2
k2 2
and
2
a3 79 282 o2 52
== —k5) — —(== — 5k k2 —10
(k§ 3) oo (k ko) + -5 + k3 — 100
B ’
2 2 72
—= — (== — 5k — 25k5 > 0.
l " ( T 2)1 7
So, for any =z € R\{0}, (64) implies that
3/€1k2]{33| det Ao (ZQS‘)‘
4t MIN (z)|
E-ISSN: 2224-2880 850
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> el | o g - 22 - ok
e 'R ;

ko
52 + k2 — 1004

> 0. (65)
Now, from (62), (64) and (65), it has

3k1 k:gkg‘ det Ag (zx) |
aMIN (z)|

a3~
[(5 R

zeR\{0}

| sin(zmy)|

> =
[N ()]

— x—+4oo

2032 a3 /32
22 g
k? (k 2) 2

> 0.

(66)
Thus, (63) together with (66) indicates that

inf |det Ag(zz)| > 0.
xeﬁl\{o}| ot Ao(iz)|

That is, system (4) is exponentially stable. a

5 Conclusion

This paper studies the exponential stabilization of a
three-edge network system of strings with tip mass
added on the common vertex. The tip mass attached
would increase the flexibility of the system, and there-
fore modify the vibrating behavior of it. To stabilize
the vibration of such system, the following two non-
collocated controllers are designed

ow;
ot

ow;

wilt) = i (0.0) + B 75 (6, 1), i = 2,3,

The detailed analysis shows that the exponential sta-
bility of the closed-loop system can be achieved while
the feedback gain constants «;, (; satisfy some con-
ditions. Moreover, The obtained results indicates that
the non-collocated controllers can be used to deal with
the exponential stabilization problem of the network
system with tip mass, which will be applied to some
more complex vibrating system of network in our next
work.
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